Pedometrics 2015
14-18 September
University of Cordoba, Spain

Book of abstracts

https://sites.google.com/site/pedometrics2015/home
Contents

Invited keynotes ... 1

THE UNCERTAIN SOIL IN AN UNCERTAIN FUTURE

Gerard B.M. Heuvelink .. 2

HOW CAN PEDOMETRICS IMPROVE THE LIMITED REPRESENTATION OF SOILS IN GLOBAL EARTH SYSTEM MODELS?

Jed O. Kaplan .. 4

RELEVANCE OF PEDOMETRICS TO GLOBAL SOIL SECURITY

Cristine Morgan and Alex McBratney 5

PEDOMETRICS AND LARGE-EXTENT DIGITAL SOIL MAPPING APPLICATIONS

V.L. Mulder ... 6

HOW RESEARCH ON MICROSCALE PROCESSES AND ECOSYSTEM SERVICES LEADS TO A FUNDAMENTAL RETHINKING OF SOIL MEASUREMENTS

Philippe C. Baveye ... 7

ENSEMBLE KALMAN FILTERS FOR DATA ASSIMILATION IN SOIL SCIENCE

J. Jaime Gómez-Hernández ... 8

FROM BECKETT TO KRIGE: HOW PEDOMETRICS TOOK OFF

R. Webster ... 9

Digital Soil Mapping and Proximal Soil Sensing 10

MAPPING ACID SULFATE SOILS IN DENMARK USING LEGACY DATA AND LIDAR-BASED DERIVATIVES

Amelie Beucher, Henrik B. Madsen, Mette B. Greve, Peter Österholm, Sören Fröjdö, Kabindra Adhikari And Mogens H. Greve .. 11

DIGITAL SOIL MAPPING OF AN ARGENTINIAN PAMPA REGION USING STRUCTURAL EQUATION MODELLING

Marcos E. Angelini, Gerard B.M. Heuvelink, Bas Kempen, Hector J.M. Morras, Dario M Rodriguez ... 12

CYBERSOLIM: A CYBER PLATFORM FOR DIGITAL SOIL MAPPING

A-Xing Zhu, Jingchao Jiang, Chenzhi Qin 14
MAPPING SOIL PROPERTIES OVER LOW-RELIEF AREAS BASED ON LAND SURFACE DYNAMIC FEEDBACK PATTERNS

Feng Liu, Gan-Lin Zhang ... 19

SOIL ORGANIC CARBON STORAGE IN FRENCH SOILS – AN EXAMPLE OF FRENCH GLOBALSOILMAP PRODUCTS (V1)

V.L. Mulder, M. Lacoste, A. C. Richer-de-Forges, M. P. Martin, D. Arrouays 20

USING TIME SERIES COVARIATES TO PREDICT SUBSOIL PROPERTIES

Thomas F. A. Bishop, Niranjan Acharige, Matthew Pringle 22

SPATIAL PREDICTION OF POTENTIALLY TOXIC ELEMENT CONTENTS IN FOREST SOILS OF THE CZECH REPUBLIC: THE EFFECT OF PREFERENTIAL SAMPLING DATA

Luboš Borůvka, Radim Vašát, Milan Sáňka, Vit Šrámek, Jarmila Čechmánková, Václav Tejnecký, Karel Němeček ... 23

SCOPE TO PREDICT SOIL PROPERTIES AT WITHIN-FIELD SCALE FROM SMALL SAMPLES USING PROXIMALLY SENSED γ-RAY SPECTROMETER AND EM INDUCTION DATA

Jingyi Huang, John Triantafilis, Richard M. Lark, David A. Robinson, Inma Lebron, Aidan M. Keith, Barry G. Rawlins, Andrew Tye, Oliver Kuras, Martin G. Raines .. 25

COMPARING TRADITIONAL AND DIGITAL SOIL MAPS AT DISTRICT SCALE USING FUZZY K-MEANS CLUSTERING AND REML ANALYSIS

Jingyi Huang, John Triantafilis .. 26

USING LEGACY SOIL DATA FOR STANDARDIZING PREDICTIONS OF TOPSOIL CLAY CONTENT OBTAINED FROM VNIR/SWIR HYPERSPECTRAL AIRBORNE IMAGES.

Gomez C., Gholizadeh A., Borůvka L., Lagacherie, P. 27

ASSESSING THE CARBON STOCK AND ITS CHANGES FOR FORESTED ORGANIC SOILS IN HUNGARY

Gábor Illés, Gábor Kovács, Bálint Heil .. 29

COMPILATION OF NATIONAL SOIL-TYPE MAP OF HUNGARY BY OBJECT-BASED, AND MULTI-LEVEL CLASSIFICATION METHODS

Gábor Illés, László Pásztor, Katalin Takács, Zsófia Bakacsi, Annamária Laborczi, and József Szabó .. 31

MAPPING SOIL SALINITY USING HIGH-RESOLUTION IMAGERY AND PATTERN ANALYSIS: A CASE STUDY IN THE CASPIAN LOWLAND

Konyushkova M.V., Ulyumdzhiev U. Yu. .. 33
COMBINING PROXIMAL SOIL SENSING AND RANDOM FOREST TO PREDICT SOIL HYDRAULIC PROPERTIES

Anna Kühnel, Christina Bogner, Bernd Huwe ... 35

THE USE OF MEMORY-BASED LEARNING IN COMPLEX BIG SOIL NIR DATA

Leonardo Ramirez-Lopez, Antoine Stevens ... 36

COMBINING MEASURED SITES, SOIL MAP AND SOIL SENSING FOR MAPPING SOIL PROPERTIES OF A REGION

Walker, Emily, Monestiez, Pascal, Gomez, Cécile and Lagacherie Philippe 38

USING AN ELECTRICAL RESISTIVITY SENSOR TO ESTIMATE SOIL DEPTH IN PEACH ORCHARDS

José A. Martínez-Casasnovas, Jaume Arnó, Alexandre Escolà, Joan R. Rosell-Polo 39

GEO-REFERENCED MOSAIC MICRO-DIGITIZING AT DIFFERENT ZOOMING MICROSCALES: A METHODOLOGICAL PROPOSAL

Gutiérrez Castorena E. V., Ma. del C. Gutiérrez Castorena, C. A. Ortiz Solorio, L. Cajuste Bontemps, A. I. Luna Maldonado ... 41

AUTOMATED ASSESSMENT OF MULTIPLE SOIL PARAMETERS FROM MOBILE PHONE IMAGERY

Matt Aitkenhead, Malcolm Coull, David Donnelly, Richard Gwatkin 43

TIME-LAPSE MONITORING OF SOIL WATER CONTENT USING ELECTROMAGNETIC CONDUCTIVITY

Jingyi Huang, Elia Scudiero, Hosea Choo, Wes Clary, Dennis L. Corwin, John Triantafilis ... 44

CONTINUOUS DEPTH PROFILES OF SOIL CLAY CONTENT FROM PENETROMETER-BASED IN-SITU VISIBLE NEAR INFRARED SPECTROSCOPY

Jason P. Ackerson, Cristine L.S. Morgan, Yufeng Ge .. 45

PREDICTIVE MAPPING OF TOPSOIL ORGANIC CARBON IN AN ALPINE ENVIRONMENT AIDED BY LANDSAT TM

Ren-Min Yang, David G. Rossiter, Gan-Lin Zhang ... 46

USING PRINCIPAL COMPONENT ANALYSIS AND COKRIGING TO IMPROVE THE ESTIMATION OF SOIL GENERAL SOIL PROPERTIES IN AN AGRICULTURAL FIELD.

Aitor García-Tomillo, Antonio Paz González, Jorge Dafonte Dafonte................. 49

ESTIMATION OF SOIL ORGANIC MATTER STORAGE BY DETERMINISTIC AND GEOSTATISTICAL METHODS: A CASE STUDY IN NW SPAIN.

Aitor García-Tomillo, Jose Manuel Mirás-Avalos, Jorge Dafonte Dafonte, Antonio Paz González... 50
PREDICTING THE ORGANIC CARBON CONTENT AND CONTENTS OF DIFFERENT FORMS

Aleš Klement, Radka Kodešová, Radim Vašát, Miroslav Fér, Ondřej Jakšík 52

PROXIMAL SOIL SENSING FOR SOIL FUNCTIONS AS A NATURAL CAPITAL

Marc Van Meirvenne .. 54

HIGH-RESOLUTION SOIL GEOCHEMICAL MAPPING

Budiman Minasny, Uta Stockmann, Brendan Malone, Alex. B. McBratney 55

PREDICTIVE MAPPING OF SOIL PROPERTIES AT HIGH RESOLUTION BY COMPONENT WISE GRADIENT BOOSTING

Madlene Nussbaum, Andreas Papritz, Marielle Fraefel, Armin Keller 56

DIGITAL SOIL MAPPING IN THE CLOUD USING GOOGLE EARTH ENGINE

Jose Padarian, Budiman Minasny, Brendan Malone, Alex. B. McBratney 58

ABSORPTION FEATURE PARAMETERS AS PREDICTORS IN SOIL REFLECTANCE SPECTROSCOPY

Radim Vašát, Radka Kodešová, Luboš Borůvka, Ondřej Jakšík, Aleš Klement, Ondřej Drábek ... 59

COMBINING REFLECTANCE SPECTROSCOPY AND TERRAIN ATTRIBUTES FOR SOIL ORGANIC CARBON PREDICTION

Radim Vašát, Radka Kodešová, Luboš Borůvka, Ondřej Jakšík, Aleš Klement 60

SPATIAL DISAGGREGATION OF COMPLEX SOIL MAP UNITS BASED ON SOIL-LANDSCAPE RELATIONSHIPS, AND PREDICTION OF SOIL PROPERTIES AT REGIONAL SCALE

Sébastien Vincent, Blandine Lemercier, Lionel Berthier, Christian Walter 62

LANDSCAPE-SCALE EXPLORATORY RADIOMETRIC MAPPING USING PROXIMAL SOIL SENSING

Uta Stockmann, Brendan Malone, Alex. B. McBratney, Budiman Minasny 64

A COMPARATIVE STUDY ON SAMPLING METHODS FOR DIGITAL SOIL MAPPING

Lin Yang, A-Xing Zhu, Jingjing Shi, Yiming An .. 66

DSM FOR NATIONAL IRRIGATION: INTEGRATION OF DSM PRODUCTS WITH OTHER BIOPHYSICAL DATA FOR IRRIGATION ASSESSMENT.

Stephen I.C. Akpa, Inakwu O.A. Odeh, Thomas, F.A.Bishop, Ishiaku Y. Amapu, Bashir M.Sani ... 69

A TALE OF TWO PROJECTIONS: REMOVING THE EFFECTS OF WATER CONTENT AND INTACTNESS FROM IN-SITU VISNIR SPECTRA USING EXTERNAL PARAMETERIZATION AND DIRECT STANDARDIZATION
Jason P. Ackerson, Cristine L.S. Morgan, Alex McBratney, Budiman Minasny 70

USING GLOBAL SOIL MAP DATA FOR BIOPHYSICAL MODELLING – AN AUSTRALIAN EXAMPLE

Ross Searle, Andrew Moore, Mike Grundy, Budiman Minasny 71

AN ERROR BUDGET FOR SOIL SALINITY MAPPING USING DIFFERENT ANCILLARY DATA

Jingyi Huang, Ehsan Zare, Raj S. Malik, John Triantafilis 73

SCOPING THE USE BAYESIAN BELIEF NETWORKS IN DSM.

Corstanje, R., Taalab, K., Hannan, J., Mayr, T. Zawadzka, J. and Creamer, R....... 74

TEMPORAL STABILITY OF THE APPARENT ELECTRICAL CONDUCTIVITY MEASURED IN AN OLIVE MICRO-CATCHMENT

COMPARING APPARENT ELECTRICAL CONDUCTIVITY MEASUREMENTS IN AN OLIVE ORCHARD UNDER WET AND DRY SOIL CONDITIONS

A. Pedrera-Parrilla, E. Van De Vijver, M. Van Meirvenne, A. J. Espejo-Pérez, J. V. Giráldez And K. Vanderlinden ... 77

MAPPING AND MODELING OF AREAS AT RISK OF EROSION: CASE OF AURÈS CENTER (ALGERIA).

Benmessaoud Hassen; Agounne Soufiane; Chafai Chouki 78

MAPPING NUMERICALLY CLASSIFIED SOIL CLUSTERS OF KILOMBERO VALLEY USING MACHINE LEARNING

Boniface H J Massawe, Brian K Slater, Sakhti K Subburayalu, Abel K Kaaya, Leigh Winowiecki ... 79

ANALYSIS OF SOIL AND MICRO-ORGANISMS DIVERSITY AT LANDSCAPE SCALE: APPROACH BY DIGITAL MAPPING OF THE UPPER HORIZON.

Swiderski C., Saby N.P.A., Ratie C., Jolivet C., Arrouays D., Dequiedt S., Redon P-O. ... 80

SPATIAL PREDICTION OF DEPTH TO BEDROCK AND SAPROLITE USING GLOBAL DSM MODELS

Wei Shangguan, Tomislav Hengl, Gerard B.M. Heuvelink, Yongjiu Dai 82

DIGITAL SOIL MAPPING: A STRATEGIC TOOL FOR MAPPING SOIL TEXTURAL CLASSES IN RICE GROWING AREAS OF COLOMBIA.

Mayesse Da Silva, Maryory Rodríguez, Marvin Majin, Ngonidzashe Chirinda, Manabu Ishitan, Maria Katto, Jeimar Tapasco, Edgar Torres 83
AN EXPERT KNOWLEDGE-BASED FUZZY LOGIC APPROACH TO MAPPING SOIL PROPERTIES FOR PRACTICAL USE IN CENTRAL AMERICA

Minerva J. Dorantes, Phillip R. Owens, Jenette M. Ashtekar, Zamir Libohova, Axel Schmidt ... 84

TOWARDS A METHODOLOGY FOR HARMONIZATION OF SOIL MAP ASSISTED BY DIGITAL MAPPING

Laroche B., Fourvel G., Drufin S., Richer De Forges Anne, Girot G 85

DETERMINATION OF HOMOGENEOUS AREAS IN A PEDO-CLIMATIC INDEX FOR INDEX INSURANCE IN ECUADOR

Omar Valverde, Ana M. Tarquis, Alberto Garrido .. 87

ASSESSING THE POTENTIAL OF IMAGING SPECTROMETERS FOR SOIL ORGANIC CARBON ESTIMATION

Juanjo Peón, Susana Fernández, Carmen Recondo, & Javier F. Calleja 89

COMPARISONS OF EQUAL-AREA SPLINE FUNCTION MEANS VERSUS SOIL HORIZON WEIGHTED MEANS FOR GLOBALSOILMAP SOIL PROPERTIES BASED ON STANDARD DEPTH LAYERS USING STATSGO2.

Zamir Libohova, Nathan P. Odgers, James A. Thompson, Jonathan Hempel, Steve Peaslee, Phillip, R Owens .. 91

THE UTILITY OF LIDAR IN MODELLING DIGITAL TERRAIN ATTRIBUTES FOR IMPROVED SOIL-LANDSCAPE AND NATURAL RESOURCE ASSESSMENTS: STRENGTHS WEAKNESS, OPPORTUNITIES AND CHALLENGES

JT Atkinson, WP de Clercq, A Rozonov ... 93

Soil Sampling & Monitoring .. 95

OPTIMIZATION OF SAMPLE CONFIGURATIONS FOR VARIOGRAM ESTIMATION

Alessandro Samuel-Rosa, Gerard B M Heuvelink, Gustavo M Vasques, Lúcia Helena Cunha dos Anjos ... 96

ASSESSING TEMPORAL TRENDS OF POLYCYCLIC AROMATIC HYDROCARBONS OVER 25 YEARS – STATISTICAL TOOLS AND THEIR PITFALLS.

BALANCED SAMPLING: A VERSATILE SAMPLING APPROACH FOR STATISTICAL SOIL SURVEYS

Dick J. Brus .. 99

USE OF AN UNBALANCED NESTED SAMPLING SCHEME TO REVEAL SCALE-DEPENDENT VARIATION IN SOIL PROPERTIES

Helen Metcalfe, Alice E Milne, Richard Webster, Jonathan Storkey 100
SAMPLING FOR REGRESSION-BASED DIGITAL SOIL MAPPING – CLOSING THE GAP BETWEEN STATISTICAL DESIRES AND OPERATIONAL APPLICABILITY

Mareike Ließ

MONITORING HUMIFICATION RATES OF SOIL ORGANIC CARBON IN MOUNTAIN PEATLANDS RECOVERED USING VIS-NIR SPECTROSCOPY APPROACH.

S. Fernández; J. Valderrabano; A. Bueno; J. Peón

PROBABILISTIC ASSESSMENT OF MONITORING DATA OF 30 YEARS' TRANSFORMATION OF SOILS ON EXAMPLE OF SOUTHERN CHERNOZEMS IN WESTERN SIBERIA

Irina Mikheeva

SPATIAL UNCERTAINTY-GUIDED RESAMPLING TO IMPROVE DIGITAL SOIL MAPS

Felix Stumpf, Karsten Schmidt, Thorsten Behrens, Sarah Schönbrodt-Stitt, Alexandre Wadoux, Thomas Scholten

SPATIAL POLLUTION INVESTIGATION OF IRON, LITHIUM AND MANGANESE IN THE HORMUZ ISLAND BY USING CONTAMINATION FACTOR (CF)

Fatemeh Abaszadeh, Vahidreza Jalali, Azam Jafari, Safoora Asadi Kapoorchal

DETERMINATION OF PROPER SOIL SAMPLING DENSITY AND STRATEGY BEFORE SAMPLING

Y. Hasheminejhad, M. Homaei, A.A. Noroozi

MONITORING THE IMPACT OF DRAMATIC LANDUSE SHIFTS ON SOIL IN A FRAGILE SEMI-ARID LANDSCAPE

Patrick Filippi, Stephen R. Cattle, Thomas F.A. Bishop, Inakwu O.A. Odeh

COMPARATIVE ASSESSMENT OF DIFFERENT METHODS FOR DETERMINING SOIL HYDRAULIC PROPERTIES: MEASUREMENTS AND ESTIMATIONS

Mouna Feki, Giovanni Ravazzanni, Marco Mancini, Alessandro Ceppi

COMPARISON OF METHODS TO ESTIMATE THE SAMPLING VARIANCE OF DESIGN-BASED ESTIMATES OF SPATIAL MEANS FROM SYSTEMATIC RANDOM SAMPLING: APPLICATION TO THE FRENCH SOIL MONITORING NETWORK DATA

N. P.A. Saby, H. Boukir, Vera L. Mulder, D.J. Brus

USE OF VIS-NIR DIGITAL LIBRARY TO REDUCE ANALYTICAL COSTS AND SURVEY TIME

Fikrat Feyziyev, Simone Priori, Giovanni L'Abate, Edoardo A.C. Costantini

SPATIAL VARIABILITY OF SOIL GENERAL PROPERTIES AND MICRONUTRIENTS AT THE COUNTY SCALE IN SOUTH ECUADOR

Chabla Carrillo, J., Espinoza Scaldaferr, E. F., Barrezueta Unda, S., Lado Liñares, M., Vidal Vázquez, E., And Paz González, A
MODELLING SOIL WATER VARIATION IN THE SAHARA DESERT ENVIRONMENT (THE OASIS OF GUERRARA-MZAB, ALGERIA): SEARCH FOR MOST SUITABLE PARAMETERS FOR WATER RETENTION

Azzoug L., Hamdi-Aissa B. And, Dridi B., Hadj-Mahammed M. 118

EFFECT OF SAMPLE SCHEME DESIGN ON VARIOGRAM AND MODEL FITTING

Ebrahim Jahanshiri .. 119

UNCERTAINTY ASSESSMENT OF CO2 FLUXES MONITORING BY MOBILE EDDY COVARIANCE TOWER AT THE FIELD AGROECOSYSTEM IN MOSCOW REGION OF RUSSIA

Meshalkina J.L., Yaroslavtsev A.M., Vasenev I.I., Valentini R. 120

SAMPLING FOR MAPPING SOIL HYDRAULIC PROPERTIES IN AN AGRICULTURAL AREA IN TANZANIA

Jacob Kaingo , Dick J. Brus , Siza D. Tumbo , Boniface P. Mbilinyi 122

MAGNETIC SUSCEPTIBILITY FOR THE SPATIAL PREDICTION OF CLAY CONTENT IN BRAZILIAN SOILS.

José Marques Jr., Vidal Barrón, Daniel De Bortoli Teixeira, Diego Silva Siqueira, Gener Tadeu Pereira ... 123

OPTIMIZATION OF SAMPLE CONFIGURATIONS FOR SPATIAL TREND ESTIMATION

Alessandro Samuel-Rosa , Dick J Brus , Gustavo M Vasques, Lúcia Helena Cunha dos Anjos .. 124

COMBINATION OF PROXIMAL AND REMOTE SENSING METHODS FOR ESTIMATION OF HEAVY-METAL CONTAMINATION IN ARABLE LAND

Yan Li, Zhou Shi, Songchao Chen .. 126

Soil Morphometrics ... 128

BACTERIA DISTRIBUTION MICRO-MAPPING FROM SOIL THIN SECTIONS

Gutiérrez Castorena Ma del C., E. V. Gutiérrez Castorena, T. González Vargas, L. Cajuste Bontemps, J. Delgadillo Martínez ... 129

DEVELOPMENT OF NEW INDEXES AND METRICS: IRREGULARITY OF THE VEGETATIVE ACTIVITY

Antonio Saa-Requejo, Ana M. Tarquis, Juan J. Martín Sotoca, Jose Luis Valencia and Leonor Rodriguez ... 131

RADIOMETRIC ANALYSIS OF SOIL PROFILES TO ASSESS HORIZONATION, PARTICLE SIZE DISTRIBUTION, AND ELEMENTAL COMPOSITION

Heather D. Watson, James A. Thompson ... 133
MEASURING AGGREGATE STABILITY THROUGH IMAGE RECOGNITION.

Alex McBratney, Mario Fajardo, Damien Field and Olivier Fontenas 134

DETECTION OF SOIL MORPHOLOGICAL HORIZONS USING VIS-NIR SPECTROSCOPY.

Mario Fajardo, Alex McBratney and Brett Whelan ... 136

PORE SIZE DISTRIBUTION OF SOIL: AN ASSESSMENT OF EXISTING SOFTWARE USING TOMOGRAPHIC AND SYNTHETIC 3D IMAGES.

Alasdair N. Houston, Ruth Falconer, Wilfred Otten, Simona Hapca 137

PORE DETECTION IN COMPUTED TOMOGRAPHY (CT) SOIL IMAGES THROUGH WAVELET MODULUS MAXIMA ANALYSIS.

Juan J. Martín-Sotoca, Ana M. Tarquis, Juan Bautista Grau, Antonio Saa-Requejo ... 139

CALCULATION OF SOIL POROSITY BASED ON OTSU'S ALGORITHM AND MINKOWSKI METRICS.

Jorge de Castro, Francisco Ballesteros ... 141

THREE-DIMENSIONAL MAPPING OF SOIL ORGANIC CARBON IN HETEROGENEOUS SOILSCAPES OF KARELIA

V. Sidorova, P. Krasilnikov ... 142

A DIAGNOSTIC TOOL TO INVESTIGATE DISTRIBUTION OF SOIL ORGANIC CARBON AT THE PROFILE SCALE.

S.M. O’Rourke, M. Montazerolgheam, B.M. Minasny, A.B. McBratney, N.M. Holden ... 144

EVALUATION OF VIS-NIR SPECTROSCOPY AS A METHOD FOR SOIL CLASSIFICATION

Ádám Csorba, Vince Láng, Erika Michéli .. 145

LASER SCANNER TECHNOLOGIES TO MONITORING MOUNTAIN PEATLANDS RECOVERING

C. Ordoñez, Silverio; J. Valderrabano; S. Fernandez ... 146

3D LISA: A FLEXIBLE PROGRAM FOR CALCULATING THE LOCAL MORAN’S I ILLUSTRATED WITH DATA FROM A CAT SCAN OF A SOIL CORE

Ben Ingram, Pierre Goovaerts, Ruth Kerry, Daniel Gimenez 147

Soil & Landscape Modelling ... 148

GRAIN SIZE DISTRIBUTION CHANGES DURING WEATHERING AS A FUNCTION OF LITHOLOGY

Denys van den Berg, Arnaud Temme, Tom Vanwalleghem, Andrea Roman Sanchez, Minke Wuis ... 149
MATHEMATICALLY MODELLING THE DYNAMICS OF SOIL PROFILE EVOLUTION, ITS COUPLING WITH EROSION AND LANDFORM EVOLUTION, AND POTENTIAL APPLICATIONS IN BETTER DEFINING ENVIRONMENTAL PROCESSES

Garry R Willgoose, Dimuth P Welivitiya, Greg R Hancock, Sagy Cohen, Natalie Lockart

CAN SOILSCAPE STRATIFICATION OPTIMISE THE FEATURE SPACE IN DIGITAL SOIL MAPPING?

J. Hannam, T. Mayr, R. Jones, J. Zawadzka, A. Holden, R. Palmer

ANCIENT HUMAN IMPACT IN AN MEDITERRANEAN ENVIRONMENT: THE APPLICATION OF A DYNAMIC SOIL MODEL TO QUANTIFY CROP YIELDS IN THE PAST

Maarten Van Loo, Gert Verstraeten, Bert Dusar

INTERACTION BETWEEN SEDIMENT FLUXES, CARBON DYNAMICS AND BIOMASS PRODUCTION: COMPARING CONTRASTED ENVIRONMENTS USING AN INTEGRATED SOIL-LANDSCAPE MODEL

Samuel Bouchoms, Veerle Vanacker, Kristof Van Oost

TERRAIN CHARACTERISATION USING AUTOMATED LANDSCAPE DISSECTION AND SLOPE BREAK ANALYSES: APPLICATIONS FOR SOIL INFORMATION SYSTEMS

SOIL AND SOIL QUALITY MAPPING FOR AN EXTREME RELIEF MOUNTAINOUS REGION USING DETAILED FUZZY SLOPE FORMS

Bui Le Vinh, Gerhard Clemens, Karl Stahr

COMPREHENSIVE EVALUATION OF DATA MINING TECHNIQUES FOR PEDOTRANSFER FUNCTION OF BULK DENSITY: A PATH FOR OBTAINING LOWER ERRORS THAN SIMPLE AVERAGE

Raquel Stucchi Boschi, Felipe F. Bocca, Maria Leonor R.C. Lopes-Assad, Luiz Henrique Antunes Rodrigues, Eduardo Delgado Assad

DEVELOPMENT OF A COUPLED MARSPLINES MODEL AND MATTER-ELEMENT ANALYSIS: MODELING OF LAND SUITABILITY INDICES WITH LIMITED DATA

Fereydoon Sarmadian, Ali Keshavarzi

DELINEATING PALEO RIVER TERRACES: A GEOBIA APPROACH

Gerrit Louw, Adriaan van Niekerk & Andrei Rozanov

SPATIAL SOIL NUTRIENTS PREDICTION USING THREE SUPERVISED LEARNING METHODS FOR ASSESSMENT OF LAND POTENTIALS IN COMPLEX TERRAIN

Jeong, Gwan Yong; Ließ, Mareike; Park, Soo Jin; Huwe, Bernd
SPATIAL MODELING OF NUTRIENT LOSSES IN AN ALFISOL BY DIFFERENT SUGARCANE CULTIVATED SCENARIOS

Gener Tadeu Pereira, Patricia Gabarra Mendonça, Daniel De Bortoli Teixeira, João Fernandes da Silva Jr., Ismênia Ribeiro Oliveira, Marcílio Vieira Martins Filho, José Marques Jr. .. 166

ENHANCING PEDOTRANSFER FUNCTIONS WITH ENVIRONMENTAL ATTRIBUTES FOR SOIL BULK DENSITY ESTIMATION AT NATIONAL SCALE.

A MECHANISTIC MODEL TO PREDICT SOIL DEPTH IN A PLATEAU AREA OF RIO GRANDE DO SUL, BRAZIL

Benito R. Bonfatti, Alfred Hartemink, Elvio Giasson, Budiman Minasny, Tom Vanwalleghem ... 168

THE EFFECT OF LANDSCAPE POSITION AND ASPECT ON SOIL FORMATION: CONTRASTING FIELD AND MODEL RESULTS

SOIL-LANDSCAPE MODELLING IN THE SANTA CLOTILDE CRITICAL ZONE OBSERVATORY

Román, A., Cáceres, F., Pédèches, R., Giráldez, J.V.; Vanwalleghem, T. 170

USING POISSON KRIGING TO EXAMINE THE SPATIAL AND TEMPORAL RISK OF AFLATOXIN CONTAMINATION OF CORN IN SOUTHERN GEORGIA, USA

Pedodiversity & Soil Ecosystem Services ... 172

BIOPEDOMETRICS: THE PARALLELS CHALLENGES AND SYNERGIES OF SOIL BIODIVERSITY AND PEDODIVERSITY

Alex McBratney, Budiman Minasny, Vanessa Pino, Jose Padarian, Mario Fajardo ... 173

INTEGRATION OF ASSESSMENT METHODS FOR SOIL SERVICES IN ECOSYSTEM SERVICE FRAMEWORKS

A. Keller, L. Greiner, S. Zimmermann, M. Nussbaum, A. Papritz 175

OPERATIONALIZING SOIL ECOSYSTEM SERVICES AT DIFFERENT SCALES: A FLEXIBLE METHODOLOGICAL APPROACH AT MULTIPLE GOVERNANCE LEVELS

Calzolari, C., Ungaro, F., Filippi, N., Guerandi, M., Malucelli, F., Marchi, N., Staffilani, F., Tarocco, P. .. 176
ASSESSMENT OF SOIL HEALTH AND ECOSYSTEM SERVICES IN THE USAMBARA MOUNTAINS OF TANZANIA: MAPPING OF SOIL ORGANIC CARBON

Leigh Winowiecki, Tor-Gunnar Vågen, Nicolas Jelinski, Boniface Massawe 178

UNDERSTANDING THE INTERRELATIONSHIP BETWEEN PREDICTIVE SOIL VARIATION AND MODELLING ECOSYSTEM GOODS AND SERVICES IN A SPATIALLY COMPLEX SYSTEM (URBAN).

Corstanje, R. , Grafius, D. , Zawadzka, J. , Harris, J. and Mercer, T. 179

DETERMINISTIC AND STOCHASTIC COMPONENTS OF SOIL MAPS

Andrei Rozanov... 180

MAPPING SOIL FUNCTIONS AND SERVICES BASED ON DIGITAL SOIL PROPERTY MAPS

László Pásztor , Nándor Fodor , Gábor Illés , Gábor Szatmári , Annamária Laborczi , Katalin Takács , Zsófia Bakacsi , Sándor Koós , József Szabó 182

SOIL ORGANIC CARBON AND LAND USE CHANGE: CAN WE DETECT SOC DENSITY INCREASE?

Pavel Pavlenda, Jozef Capuliak, Hana Pavlendová ... 184

A METHOD FOR SPATIALLY MAPPING SOIL ECOSYSTEM SERVICES

Medcalf, KA , Bell, GK ... 186

A SOIL DIAGNOSTIC APPROACH, TO REFLECT SOIL FUNCTIONS – LANDMARK PROJECT FOR OPTIMISATION OF SOIL FUNCTIONS AT LOCAL, REGIONAL AND EU SCALES

Vince Lang , Rachel Creamer , Rogier Schulte , Erika Micheli 187

SYNERGIES AND TRADE-OFFS BETWEEN SELECTED QUANTIFIABLE SOIL ECOSYSTEM SERVICES.

Joanna Zawadzka , Ronald Corstanje , Jim Harris , Anil Graves 188

ACCOUNTING FOR SOIL ORGANIC CARBON STOCKS IN FOREST PLANTATIONS USING NORMALIZED VERTICAL SOC DISTRIBUTION MODELS

Liesl Wiese , Andrei Rozanov , Willem De Clercq ... 189

LONG-TERM IMPACT OF LANDSCAPE LEVEL REHABILITATION ON ECOSYSTEM SERVICES AND FOOD SECURITY IN ABREHA WEATSIBEHA, NORTHERN ETHIOPIA

Muluberhan Biedemariam Tassewa and Kiros Meles Hadgub......................... 191

Soil Geostatistics .. 192

ROBUST GEOSTATISTICS

Andreas Papritz .. 193

GENERALIZED GEOSTATISTICAL MODELS

Laura Poggio, Alessandro Gimona, Luigi Spezia, Mark J. Brewer

Spatial Prediction of Topsoil Texture in Region Centre (France) Combining Regression and Area-to-Point Kriging

Mercedes Roman Dobarco, Tom Orton, Nicolas P.A. Saby, Vera Leatitia Mulder, Blandine Lemercier, Dominique Arrouays

Application of Sequential Stochastic Simulation Approach Based on Regression Kriging for the Delimitation of Areas with Natural Constraints in Hungary

Gábor Szatmári, Károly Barta, László Pásztor

Modelling the Horizontal and Vertical Variation of Soil Properties Using Data from Various Depth Intervals: An Approach Based on Area-to-Point Kriging

Tom Orton, Matt Pringle, Tom Bishop

Empirical Bayesian Kriging Errors Map as an Indicating Method of Different Land Use

Samsonova V.P., Blagoveschenskiy Yu.N., Meshalkina J.L.

Geostatistical Modelling in Three-Dimensions

Hongyi Li, Ben Marchant, Richard Webster

Proximal soil sensing and Soil Morphometrics

The Soil Vis-NIR Signature Collection of the National Centre for Soil Mapping, Italy (CRA-ABP)

Giovanni L’Abate, Simone Priori, Fikrat Feyziyev, Edoardo A.C. Costantini

Spectral Characteristics of Diagnostic Horizons for Typical Soils in East China

Zeng Rong, Zhang Gan-Lin, Zhao Yu-Guo, Li De-Cheng

Simona M. Hapca, Philippe C. Baveye, Clare Wilson, R. Murray Lark, Wilfred Otten

Characterisation of Field-Scale Salinity with Depth by Quasi-3D Inversion of DUALEM-1 Data
Jingyi Huang, Tanya Kilminster, Edward G. Barrett-Lennard, John Triantafilis. 210
DOWNSCALING A NATIONAL CARBON MODEL FOR USE AT THE FARM SCALE.

Quentin Styc, Brendan Malone, Alex McBratney and Budiman Minasny........... 211
THE APPLICABILITY OF GAMMA-RAY SPECTROMETRY WITHIN SOIL SCIENCE
Rouze, Gregory, Morgan, Cristine, Ackerson, Jason, McBratney, Alex.............. 213
A DIAGNOSTIC TOOL TO INVESTIGATE DISTRIBUTION OF SOIL ORGANIC CARBON AT
THE PROFILE SCALE.
S.M. O’Rourke, M. Montazerolgheam, B.M. Minasny, A.B. McBratney, N.M. Holden .. 215
PORE DETECTION IN COMPUTED TOMOGRAPHY (CT) SOIL IMAGES THROUGH
WAVELET MODULUS MAXIMA ANALYSIS.
Juan J. Martín-Sotoca, Ana M. Tarquis, Juan Bautista Grau, Antonio Saa-Requejo .. 216
RADIOMETRIC ANALYSIS OF SOIL PROFILES TO ASSESS HORIZONATION, PARTICLE
SIZE DISTRIBUTION, AND ELEMENTAL COMPOSITION
Heather D. Watson, James A. Thompson... 218
SATELLITE-BASED DYNAMIC ESTIMATION OF RAINFALL EROSIVITY IN CHINA
Hongfen Teng, Ziqiang Ma, Yong Liu, Zhou Shi.. 219
THE USE OF MEMORY-BASED LEARNING IN COMPLEX BIG SOIL NIR DATA
Leonardo Ramirez-Lopez, Antoine Stevens .. 220
EVALUATION OF VIS-NIR SPECTROSCOPY AS A METHOD FOR SOIL CLASSIFICATION
Ádám Csorba, Vince Láng, Erika Michéli... 222

Soil spatial and temporal scaling.. 223
SPATIAL INFERENCE OF SOIL DEPTH TO BEDROCK IN MEXICO WITH FOCUS ON
TERRAIN COVARIATES IN A MULTI SCALE FRAMEWORK
Carlos E. Arroyo-Cruz, Fabiola González, Claudia Aguilar, Mario Guevara and
Jorge Larson ... 224
VARIABILITY OF SOIL PENETRATION RESISTANCE IN AN OLIVE ORCHARD WITH
CONVENTIONAL AND NO TILLAGE
Juan López de Herrera, Tomás Herrero Tejedor, Antonio Saa-Requejo, Jose Luis
Valencia and A.M. Tarquis .. 226
MULTI-SCALE VARIABILITY IN SOIL TEXTURE: A CONTINENTAL-SCALE ASSESSMENT
USING LEGACY DATA.
Stacey Eliza Paterson, Alex McBratney, Budiman Minasny............................... 228
SOIL DATA MODELLING AND VISUALIZATION IN 3D+T: COMBINING MACHINE LEARNING AND SPATIOTEMPORAL GEOSTATISTICS

T. Hengl, C. Gash, B. Gräler ... 230

STATUS AND SCALABLE TRENDS OF SALINITY SOILS OF BAS-CHELIFF (ALGERIA)

Ait Mechedal M., Ouamer Ali K., Saoud M., Daoud Y. .. 231

3D MODELLING OF SCOTTISH SOIL PROPERTIES: TOWARDS HIGH RESOLUTION DSM FOR SCOTLAND SUPPORTED BY REMOTE SENSING.

Laura Poggio, Alessandro Gimona .. 233

FRONTIERS OF SOIL SCIENCE: FRACTAL METROLOGY FOR BIOGEOSYSTEMS ANALYSIS

Klaudia Oleschko, Andrei Khrennikov, Eusebio Ventura, Rebeca Vazque, Ana Tarquis .. 235

MULTIFRACTAL AND LEVY-STABLE STATISTICS OF SOIL SURFACE MOISTURE DISTRIBUTION DERIVED FROM 2D IMAGE ANALYSIS.

Humberto Vega Millan, Ramiro Cumbra, A.M. Tarquis ... 237

MAPPING SOIL RESOURCES OF AFRICA AT MULTIPLE SPATIAL RESOLUTIONS: FROM TEXTURE-BY-HAND TO 'CLOUD' AND BACK

T. Hengl, J. Beniston .. 238
ASSESSING THE CARBON STOCK AND ITS CHANGES FOR FORESTED ORGANIC SOILS IN HUNGARY

Gábor Illés (1), Gábor Kovács (2), Bálint Heil (2)

(1) NARIC Forest Research Institute, HUNGARY; (2) University of West Hungary, HUNGARY

Email of corresponding author: illesg@erti.hu

ABSTRACT

Hungary committed to submit GHG inventory reports according to Kyoto Protocol under UNFCCC.

Our study – as a background research for GHG report – aimed at the assessment of total carbon stock in afforested organic soils in Hungary together with stock changes if possible. Additionally, we had to give assessments on the total area of forested organic soils, too. To fulfil the requirements we took the option to collect new data by appropriate field surveys and to evaluate historical data of earlier surveys.

However the basic reason for this study was the need to provide more precise data in GHG reports as it is required by improved GHG reporting protocol, having information on the actual carbon stock of our organic soils and their possible emission rates is crucial for developing appropriate land management plans for involved areas.

In order to identify organic soils we used the definition of Histosols according to WRB characterization of soils. Beside this we selected all the possible forest areas from the national forestry database based on site data records that reflected on organic soils by chance.

After we had the possible maximum area of forested organic soils we had to decide on sampling intensity. Using the soil data (both field survey and laboratory data) of an earlier survey (15 years ago) of a wetland area we determined the necessary sample size to have carbon content assessment within 95% confidence level. The 130 forest compartments for sampling were then chosen randomly while the size of the compartments served as weight for sample choice – the bigger the compartment the higher the chance to be chosen. Selected forests were subject of soil sampling. Undisturbed samples were collected from entire profiles according to systematic, regular depths and from respective soil layers. Soil-type and volumetric carbon content were determined for all the samples. Data was evaluated using statistical and GIS methods. Applying digital soil mapping tools we compiled map for occurrence of organic soils under forests in Hungary.

The assessments of carbon stock changes were based on the comparison of current results with the results of the 15-year earlier study.
Our results showed that the total area of forested organic soils in Hungary reaches 6500 ha ± 750 ha. Their average carbon content is 25.5% (m/m) ± 3%. The average thickness of histic horizon is 64 cm ± 12 cm. Total carbon content of these soils is app.: 4 x 10^6 tons ± 0.2 x 10^6 tons. The average specific carbon content of these soils is between 45 and 104 kg C*m^-2. This is equal with 455-1045 tC*ha^-1 carbon content. The amount of the calculated carbon stock change is app.: -2.27 tC*ha^-1*yr^-1 ± 0.34 tC*ha^-1*yr^-1. It means the change of organic horizon in an average of -1.30 cm*yr^-1 ± 0.17 cm*yr^-1. Supposing that the emission rate remains unchanged the total carbon stock can be emitted back to the atmosphere within 271 years.
CONFERENCE TOPIC: Digital soil mapping and proximal soil sensing

COMPILATION OF NATIONAL SOIL-TYPE MAP OF HUNGARY BY OBJECT-BASED, AND MULTI-LEVEL CLASSIFICATION METHODS

Gábor Illés (1), László Pásztor (2), Katalin Takács (2), Zsófia Bakacsi (2), Annamária Laborczi (2), and József Szabó (1)

(1) NARIC Forest Research Institute, HUNGARY; (2) Institute for Soil Science and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, HUNGARY

Email of corresponding author: illesg@erti.hu

ABSTRACT

Traditionally in Hungary the soil cover under agricultural and forestry management is typically characterized independently and just approximately identically. Soil data collection is carried out and the databases of soil features are managed irrespectively. As a consequence nationwide soil maps cannot be considered homogeneously predictive for soils of croplands and forest, planes and hilly/montounous regions. Therefore, despite of a great amount of available soil information from former mapping- and surveying campaigns, there are more and more frequently emerging discrepancies between the available and the expected data.

In order to compile a national soil type map with harmonized legend as well as with spatially relatively homogeneous predictivity and accuracy the authors unified their resources. Soil data originating from the two sources (agriculture and forestry) were cleaned and harmonized according to a common soil type classification.

The harmonised soil dataset consisting the data of almost 60 thousand soil profiles, describing 42 representative soil-types with spatial reference was divided into learning and test data point samples. Additionally, a corresponding dataset of 32 spatially exhaustive, ancillary, environmental variables – including legacy soil data, too – was established covering the whole area of the country.

In next step we applied methods, which have been used in image analysis so far. We synthesized a geo-referenced TIFF image consisting of the 32-predictor variables as image bands. It was loaded into eCognition Developer as synthetic image data. Sample data was added as thematic layer. A sequence of multi-resolution segmentations were applied on the “image layers” to delineate homogeneous spatial entities that were used later as objects for classifications. We applied different scales for segmentation in order to find the best result for the required spatial resolution. Altering segmentation scales corresponds to different map scales resulting in perfect topology of image objects allowing the reasonable aggregation and disaggregation of soil bodies. For base map we chose the L20 segmentation level corresponding approximately to a map
scale of 1:10 000, which performed higher object density in mountain areas and coarser in lowlands according to the spatial variation of the environmental variables. Image segments containing learning sample soil data points served as learning image objects to train image classifiers (Bayes, random tree, decision tree).

During classification we used the multi-level approach by that we mean a two staged classification process. First, we identified spatial distribution of larger soil groups such as Chernosems. In the 2nd stage within the area of a larger group we searched for only those soil-types that corresponds to that group refining spatial resolution this way.